Report
This report on 1624 car failures.
The average labour cost was 242.9180111.
The average material cost was 179.3948276.
This report was generated on July,24,2024.
Created by: Analyst Julius
---
title: "CAR ANALYSIS DASHBOARD"
output:
flexdashboard::flex_dashboard:
css: styles.css
theme: default
orientation: rows
vertical_layout: scroll
source_code: embed
social: ["menu"]
---
```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(DT)
library(rpivotTable)
library(tidyverse)
library(plotly)
library(openintro)
library(highcharter)
```
```{r, include=FALSE}
data <- read.csv("vehicle.csv")
str(data)
```
Interactive Visualization
=====================================================
Row
------------------------------------------------------
### Car Failure Analysis.
```{r}
valueBox(paste("Failure",
color = "warning"))
```
### Car Failure in US
```{r}
valueBox(length(data$State),
icon = "fa-user")
```
### Labor Cost
```{r}
gauge(round(mean(data$lc),
digits = 2),
min = 0,
max = 350,
gaugeSectors(success = c(0,150),
warning = c(150,240),
danger = c(240,350),
colors = c('green', 'yellow', 'red')))
```
### Massachusetts
```{r}
valueBox(sum(data$State=="MA"),
icon = "fa-building")
```
### California
```{r}
valueBox(sum(data$State == "CA"),
icon = "fa-building")
```
### Texas
```{r}
valueBox(sum(data$State == "TX"),
icon = "fa-building")
```
### Florida
```{r}
valueBox(sum(data$State == "FL"),
icon = "fa-building")
```
Row
------------------------------------------------------
### State With Minimum Failure
```{r}
p1 <- data %>%
group_by(State) %>%
summarise(count = n()) %>% filter(count <= 20 & count > 1) %>%
ggplot(aes(State,count, fill = State))+geom_col()+
theme_classic()+theme(legend.position = "none")+
labs(title = "Failure By State",
caption = "** By Julius**")
ggplotly(p1)
```
### Top 5 States
```{r}
p2 <- data %>%
group_by(State) %>%
summarise(count = n()) %>%
filter(count>50) %>%
plot_ly(labels = ~State,
values = ~count) %>%
add_pie(hole = 0.4)
p2
```
Row
--------------------------------------------------------
### FM vs Mileage
```{r}
p3 <- data %>%
ggplot(aes(fm, Mileage))+geom_col(fill = "blue")+theme_classic()
ggplotly(p3)
```
### Scatter Plot of Month vs Mileage
```{r}
p4 <- data %>%
ggplot(aes(fm, Mileage))+geom_point()+geom_smooth(se = FALSE, color ="blue")
ggplotly(p4)
```
Map
=====================================================
### Map
```{r}
car <- data %>%
group_by(State) %>%
summarize(total = n())
car$State <- abbr2state(car$State)
highchart() %>%
hc_title(text = "Car Failure in US") %>%
hc_subtitle(text = "source: vehicle failure.csv") %>%
hc_add_series_map(usgeojson, car,
name = "State",
value = "total",
joinBy = c("woename", "State")) %>%
hc_mapNavigation(enabled = T)
```
DATA TABLE
============================================================
```{r}
datatable(data,
caption = "Failure data",
rownames = T,
filter = "top",
options = list(pagelength = 25))
```
Pivot Table
============================================================
```{r}
rpivotTable(data,
aggregatorName = "count",
cols = "fm",
rows = "State",
rendererName = "Heatmap")
```
Summary {data-orientation=columns}
===================================================================
column
----------------------------------------------
### Max Failure Month
```{r}
valueBox(max(data$fm),
icon = "fa-user")
```
### Average Labour cost
```{r}
valueBox(round(mean(data$lc),digits = 2),
icon = "fa-area-chart")
```
### Average Mileage at Failure
```{r}
valueBox(round(mean(data$Mileage),digits = 2),
icon = "fa-area-chart")
```
Column
----------------------------------------------------------------
Report
* This report on `r length(data$fm)` car failures.
* The average labour cost was `r mean(data$lc)`.
* The average material cost was `r mean(data$mc)`.
This report was generated on `r format(Sys.Date(), format = " %B,%d,%Y")`.
About Report
==========================================================
Created by: Analyst Julius