Row

Total Amount

437771

Total Profit

36963

Total Quantity

5615

Row

Total Amount By State

Total Quantity by Category

Total Amount by Customer Name

Row

Total Profit by Month

Total Quantity by Payment Mode

Total Profit By Sub Category

Row

Profit Per Quarter

Amount Traded Weekdays

---
title: "RETAIL STORE SALES DASHBOARD"
output: 
  flexdashboard::flex_dashboard:
    theme: cosmo
    orientation: row
    vertical_layout: scroll
    source_code: embed
    social: ["menu"]
---

```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(plotly)
library(rpivotTable)
data <- read.csv("Details.csv")
data1 <- read.csv("Orders.csv")
data_full <- data %>% inner_join(data1)
data_full$Order.Date <- dmy(data_full$Order.Date)
```


Row
-----------------------------------------------------------------------
### Total Amount

```{r}
valueBox(paste(sum(data_full$Amount)), color = "red",
         icon = "ion-arrow-graph-up-right")

```

### Total Profit

```{r}
valueBox(paste(sum(data_full$Profit)), color = "red",
         icon =  "ion-arrow-graph-up-right")
```
### Total Quantity
```{r}
valueBox(paste(sum(data_full$Quantity)), color = "red",
         icon = "ion-ios-list-outline")
```


Row
-----------------------------------------------------

### Total Amount By State

```{r}
theme_set(theme_classic())
state <- data_full %>% 
  select(State,Amount)
state$State <- factor(state$State)
state %>% 
  group_by(State) %>% 
  summarise(amount = sum(Amount)) %>% data.frame() %>% 
  filter(amount > mean(amount)) %>% 
  ggplot(aes(fct_reorder(State,amount), amount, label = amount))+geom_col(fill = "orange")+  geom_text(hjust = 2, size = 7)+
  coord_flip()+
  theme(legend.position = "none")+
  labs(x = "State", y ="Amount")+theme(axis.text.y = element_text(face = "bold", colour = "black", size = 10),  axis.text.x = element_text(face = "bold", colour = "black", size = 10))
```

### Total Quantity by Category

```{r}
data_full %>% 
  select(Quantity,Category) %>% 
  plot_ly(labels = ~Category,
          values = ~Quantity) %>% 
  add_pie(hole = 0.4)
```


### Total Amount by Customer Name

```{r}
data_full %>% 
  select(Amount, CustomerName) %>% 
  filter(Amount > 2900) %>% 
  ggplot(aes((fct_reorder(CustomerName,Amount)), Amount, fill = CustomerName, label = Amount))+
  geom_col()+ geom_text(hjust = 3, size = 5)+
  theme(
    axis.text.x = element_text(face = "bold", colour = "black"), legend.position = "none",
    axis.text.y = element_text(face = "bold", colour = "black", size = 10)
  )+labs(x = "Customer Name")+coord_flip()
```


Row
--------------------------------------------------------------------------------
### Total Profit by Month

```{r}

data_full %>% select( Order.Date,Profit) %>% 
  mutate(month = month(Order.Date, label = TRUE)) %>% 
  group_by(month) %>% 
  summarise(total_profit= sum(Profit)) %>% 
  ggplot(aes(month, total_profit, fill = factor(sign(total_profit)), label = total_profit))+geom_col()+
  scale_fill_manual(values = c("red","orange"))+theme(legend.position = "none")+
  labs(y = "Profit",x = "Month")+theme(
    axis.text.x = element_text(face = "bold", color = "black"),
    axis.text.y = element_text(face = "bold", colour = "black")
  )+geom_text(hjust = 0.5, color = "black", size = 4)+coord_flip()
  
```

### Total Quantity by Payment Mode

```{r}
data_full %>% 
  select(Quantity,PaymentMode) %>% 
  plot_ly(values =~ Quantity,
          labels = ~PaymentMode) %>% 
  add_pie(hole = 0.3)
```

### Total Profit By Sub Category

```{r}
data_full %>% 
  select(Sub.Category, Profit) %>% 
  group_by(Sub.Category) %>% 
  summarise(total_sub = sum(Profit)) %>% 
  filter(total_sub>0) %>% 
  ggplot(aes(fct_reorder(Sub.Category,total_sub),total_sub ,label = total_sub, fill = Sub.Category))+geom_col()+
   geom_text(hjust = 2, size = 5)+
  theme(
    axis.text.x = element_text(face = "bold", colour = "black"), legend.position = "none",
    axis.text.y = element_text(face = "bold", colour = "black", size = 10)
  )+labs(x = "Sub Category", y = "Profit")+coord_flip()
```


Row
-------------------------------------------------------------------

### Profit Per Quarter

```{r}
p <- data_full %>% select(Category,Order.Date, Profit) %>% 
  mutate(quarter = quarter(Order.Date)) %>% 
  group_by(quarter) %>% 
  summarise(profit_quarter = sum(Profit)) %>% 
  ggplot(aes(quarter, profit_quarter, label = profit_quarter, fill = quarter))+geom_col()+
  labs(y = "Profit", x = "Quarter")
p+geom_text(hjust = 0.5, size = 5, color = "red")+coord_flip()+theme(legend.position = "none")
```


### Amount Traded Weekdays

```{r}
data_full %>% select(Category,Order.Date, Amount) %>% 
  mutate(weekday = wday(Order.Date, label = TRUE)) %>% 
  group_by(weekday) %>% 
  summarise(Amount_traded = sum(Amount)) %>% 
  ggplot(aes(weekday, Amount_traded, fill = weekday, label = Amount_traded))+geom_col()+
  labs(y = "Amount Traded", x ="Day of the Week")+theme(legend.position = "none")+
  geom_text(vjust = 2, size = 5)
```